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Abstract 
When it comes to digital communication systems, 

channel encoders are vital for fixing channel-induced 

random mistakes. In most cases, the receiver has 

access to details on the transmitting end's channel 

encoders, including their kind and characteristics. 

Encoder types and characteristics may be partly or 

completely unknown in non-cooperative 

circumstances, such as military communication 

systems. Four distinct kinds of encoders—block, 

convolutional, Bose Chaudhuri-Hocquenghem 

(BCH), and polar—are investigated in this research to 

see if they can be adequately classified using a deep 

learning strategy. Our suggested method achieves 

classification accuracy surpassing 95% up to a bit-

error-rate (BER) value of 0.03 using a convolutional 

neural network (CNN) model. Also, when the input 

sample length increases, the accuracy improves, 

according to the findings.  

Index Terms—NCS, deep learning, convolutional 

neural networks (CNNs), channel encoder 

classification  

 INTRODUCTION  
Forward error-correcting codes (FEC codes) are 

essential in digital communication for reducing the 

impact of random transmitter mistakes [1]. It is 

essential for decoding to comprehend the receiving 

end FEC encoders. It is necessary to blindly estimate 

the channel encoder in certain cases, especially when 

the receiver does not have previous knowledge of the 

transmitter's encoder, even if some receiver systems 

know the transmitter's encoder and can decode 

successfully [2]. Afterwards, a number of novel 

algorithms and methods for blindly reconstructing 

channel encoders have been proposed. But these 

innovations bring forth fresh difficulties. Solving 

these problems will have far-reaching consequences, 

particularly in cases of non-cooperative 

communication when deciphering messages from 

unknown sources relies on correct channel encoder  

 

 

 

reconstruction. Improving spectral efficiency via 

resource conservation is possible through blind 

identification of channel encoder settings [1, 2]. 

Previous research has investigated blind recovery of 

convolutional encoders using algebraic and dual-code 

characteristics, as shown in publications like [2] and 

[3]. In [4] and [5], researchers examined blindly how 

to reassemble a pair of recursive systematic 

convolutional (RSC) encoders by using iterative 

expectation-maximization (EM) and the least-square 

approach. In order to identify encoder parameters, the 

methods shown in [6] used the rank deficit of the data 

matrix, while the methods presented in [7] used 

hamming weight distribution. Using the number of 

non-zero columns and non-zero elements in the 

column echelon form of the data matrix, the authors 

presented parameter estimate techniques for Reed-

Solomon (RS) codes. Accuracy levels exceeding 90% 

in blind convolutional code identification using 

convolutional neural networks (CNNs) have been the 

subject of recent research. Current approaches are 

computationally intensive and vulnerable to low 

signal-to-noise ratios; examples are mathematical 

algorithms and rank-based methods. On the other 

hand, our CNN model may not intrinsically 

comprehend the physics of channel encoding, has 

trouble remembering long-range dependencies, and 

struggles with sequential dependencies in channel-

encoded data. A. What Came First and What I Did It 

should be noted that current research has mostly 

concentrated on applying deep learning approaches to 

identify individual FEC codes; however, there is a 

lack of work on classifying channel encoders using 

CNN. This project's main goal is to use deep learning 

to classify four channel encoders from an incoming 
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noisy signal and evaluate the classification accuracy, 

or the likelihood of correct identification, under 

different bit error rate (BER) scenarios. For this task, 

we take into account polar, Bose-Chaudhuri-

Hocquenghem (BCH), convolutional, and Hamming 

encoders. 

 

 

Fig. 1. Encoder classification process 

 CNN-BASED BLIND ENCODER 

CLASSIFICATION  
In Fig. 1 we can see the FEC encoders being 

classified. At the outset, the FEC encoder is fed a 

sequence of bits denoted as b = [b1,b2,...,bk] that are 

produced at random. An encoder is defined as 

follows: c = [c1,c2,...,cn], where ci is an element of 

the Galois Field GF (2). It takes continuous 

information bits with a block size of k and generates 

an encoded data bit sequence with a block size of n. 

Where k is the code dimension and n is the codeword 

length, the code rate is given by r = k/n. Modulation 

is applied to the decoded digital sequence prior to 

transmission via the communication channel. At the 

transmitter, the chosen modulation techniques 

incorporate binary phase-shift keying (BPSK). The 

data bits, denoted as y = [y1,y2,...,yn], are extracted 

from the received signal after demodulation at the 

receiving end. Subsequently, the data bits are sent on 

to the FEC decoder to recover the initial information 

bits. The main goal of this study is to develop a CNN 

model that can autonomously identify or classify 

encoders. There are many digital communication and 

storage systems that make use of the channel 

encoders under consideration. These systems include 

satellite communications, Wi-Fi, and mobile 

communication standards such as GSM, CDMA, and 

5G new-radio. 

 

Part A: Creating a Database We use MATLAB to 

generate datasets for four distinct coding methods in 

our experimental setting. We presuppose flawless 

frame synchronization and effective information 

signal demodulation at the receiving end. Therefore, 

we will pretend that the channel is AWGN (additive 

white Gaussian noise). Four FEC codes, one of which 

is polar code, are shown in the article. The 

foundational principle of polar codes is channel 

polarization; they were the first codes that provide 

direct evidence of channel capacity for symmetric 

binary-input discrete memoryless channels (B-DMC). 

Encoding and decoding rely heavily on the 

dependability sequence, which is described by a 

generator matrix that is constructed recursively by the 

Kronecker product [9]. On the other hand, block 

codes divide data into fixed-size chunks and process 

each one separately. A Hamming block coding, often 

used for single-error correction, is selected for our 

experiment. Furthermore, BCH codes, which are also 

block codes, are well-known for their strong error 

correcting capabilities. They can effectively handle 

random and burst mistakes in many applications. 

Contrarily, convolutional encoders work with a 

continuous data stream, which is why they differ 

from block codes. It takes bit-by-bit input data and 

processes it in a shift register, then uses modulo-2 

additions to combine the contents of the registers to 

produce the encoded output. Standard notation for 

block codes is (n,k), where r = n−k represents the 

length of the parity or redundancy bits. The length of 

the coding constraint is expressed by N0 in the 

convolutional code described in this study, which is 

represented by (n,k,N0). In this study, the polar codes 

are represented by the variables (N,K). Here, N is the 

codeword length, which is always an exponent of 2 

(i.e., 2n for all n ≥ 2), and K is the variable that 

represents  
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Fig. 2. Basic structure of CNN the 

number of message bits. 

 

PROPOSED CNN MODEL  
The main parts of a convolutional neural network 

(CNN) design are the input and output layers, as well 

as the convolutional, pooling, and fully-connected 

layers, as shown in Figure 2. Images or data 

structured like a grid may be inputted into the input 

layer. Central to convolutional neural networks 

(CNNs) are the convolutional layers, which use a 

series of filters to extract information [11]. These 

filters detect patterns like edges, textures, and basic 

forms by performing convolution operations over the 

input data. Convolutional layers use filters, often 

called kernels, which are tiny matrices or tensors that 

convolve over the input data. The following pooling 

layers keep important information while reducing the 

spatial dimensions of the feature maps. Methods like 

max-pooling and average-pooling, which are often 

employed in pooling, accomplish this decrease. 

Lastly, characteristics obtained from earlier layers are 

processed to a level where fully linked networks 

cannot keep up. A softmax based probability 

distribution is used to achieve this. Section A. 

Convolutional Neural Networks—Learning It is 

necessary to initialize weights, perform forward 

propagation, calculate losses, backpropagation, and 

weight up dates in order to train a convolutional 

neural network (CNN). Gathering and preprocessing 

a labeled dataset is the first step, followed by 

randomized or transfer learning-based weight 

initialization of the network. Forward propagation 

involves sending training data in batches across the 

network and then applying the right functions to 

calculate the loss. After then, optimization methods 

like stochastic gradient descent (SGD) are used to 

guide further weight updates by calculating the loss 

gradients with respect to the weights via 

backpropagation. To identify any overfitting, this 

iterative procedure is performed for several epochs, 

and keeping an eye on the validation loss is critical. 

B. Instruction and Evaluation Our Keras-based model 

employs the Adam optimization technique and cross-

entropy loss, starting with a learning rate of 0.0001, 

in this study. A desktop PC with 64 GB of RAM and 

a core i9 CPU is used for both training and testing in 

an 

 

TABLE I Block encoder COMSNETS 2024 

- Poster Track Normalized Confusion 

Matrix ARCHITECTURE SPECIFICATIONS 

OF THE CNN 

 

Anaconda Navigator environment. of 80% set aside 

for training the model and 20% for assessment, we 

produce a dataset of 10,000 samples, each 1000 in 

length (int32 format). We also make use of a one-

dimensional (1-D) CNN model, the specifics of 

which are laid forth in Table I [10]. Our objective is 

to evaluate the model's performance by determining 

its classification accuracy for each encoder category 

using metrics such as true positives (TP) and false 

positives (FP) as 
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Fig. 3. Classification accuracy of 

encoders across various BER 

SIMULATION RESULTS AND 

DISCUSSIONS  
(1) The Hamming code, with its codeword length of n 

= 7, code dimension of k = 4, and generator matrix G 

= [1010011;1001001;0011011;1000101], is used as 

the block en coder. Plus, we use BCH coding with n= 

31 and k= 21. We take into account a convolutional 

encoder with a rate of 1/2, a generator polynomial g = 

[15,17], and a constraint length N0 = 4. As for the 

fourth encoder, it's a polar encoder that uses a Q = 

1024 reliability sequence, codeword length N = 16, 

and message bit length K = 2. After training the CNN 

model on the encoder dataset, we used a specialized 

test to assess its performance. 

 
Fig. 4. Confusion matrix for the 

classification accuracy of encoders at 

0.02 BER value 

 

data set. Figure 3 shows the classification accuracy of 

four different encoders: polar, convolutional, 

Hamming, and BCH. As shown in the picture, the 

accuracy always exceeds 95% for BER values below 

0.03 and 100% for BER values less than 0.02 (with 

the exception of input size 512), regardless of the 

input length. The accuracy of the categorization 

process is significantly improved with higher input 

sizes. The confusion matrix for encoder classification 

with 4096 input size and a BER of 0.02 is shown in 

Figure 4. The horizontal axis represents test results, 

whereas the vertical axis represents predicted values. 

Squares with a dark blue color represent the encoders' 

classification accuracy in this matrix. Out of the four 

encoders, the confusion matrix shows that the 

Hamming encoder is the only one with a 

classification accuracy below 85%, while the other 

three attain a perfect 100%. This is due to the fact 

that, in comparison to other codes, Hamming codes 

provide somewhat less redundancy; hence, there are 

fewer different patterns for the CNN to learn due to 

this reduced redundancy.  

 

Conclusion 
 Final Thoughts In this paper, we used a deep 

learning convolutional neural network (CNN) model 

to determine which of four encoders—block, 

convolutional, BCH, and polar—should be used over 

an AWGN channel. We looked at the correlation 

between input sample length and accuracy in 

classification, and we found that it increased as the 

sample size increased. The accuracy always hits 

100% at lower BER values before hitting the 0.02% 

BER threshold, which is noteworthy. 
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