
Vol.15, Issue No 2, 2025

 IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

91

Deep Learning Frame Work for Channel Encoders Identification

and Categorization using CNN

1PALAPARTHI BHARATH SRI SURYA SAI, 2 LINGAMPALLI NAVYA,3 PERRISETTI LAKSHMI SAI

PAVAN, 4 PALA BHARGAV, 5Mrs. J. PRIYANKA,

1234Student, Department of CSE, DNR College of Engineering & Technology, Balusumudi, Bhimavaram, India.

5Assistant Professor, Department of CSE, DNR College of Engineering & Technology, Balusumudi, Bhimavaram,

India

Abstract
When it comes to digital communication systems,

channel encoders are vital for fixing channel-induced

random mistakes. In most cases, the receiver has

access to details on the transmitting end's channel

encoders, including their kind and characteristics.

Encoder types and characteristics may be partly or

completely unknown in non-cooperative

circumstances, such as military communication

systems. Four distinct kinds of encoders—block,

convolutional, Bose Chaudhuri-Hocquenghem

(BCH), and polar—are investigated in this research to

see if they can be adequately classified using a deep

learning strategy. Our suggested method achieves

classification accuracy surpassing 95% up to a bit-

error-rate (BER) value of 0.03 using a convolutional

neural network (CNN) model. Also, when the input

sample length increases, the accuracy improves,

according to the findings.

Index Terms—NCS, deep learning, convolutional

neural networks (CNNs), channel encoder

classification

 INTRODUCTION
Forward error-correcting codes (FEC codes) are

essential in digital communication for reducing the

impact of random transmitter mistakes [1]. It is

essential for decoding to comprehend the receiving

end FEC encoders. It is necessary to blindly estimate

the channel encoder in certain cases, especially when

the receiver does not have previous knowledge of the

transmitter's encoder, even if some receiver systems

know the transmitter's encoder and can decode

successfully [2]. Afterwards, a number of novel

algorithms and methods for blindly reconstructing

channel encoders have been proposed. But these

innovations bring forth fresh difficulties. Solving

these problems will have far-reaching consequences,

particularly in cases of non-cooperative

communication when deciphering messages from

unknown sources relies on correct channel encoder

reconstruction. Improving spectral efficiency via

resource conservation is possible through blind

identification of channel encoder settings [1, 2].

Previous research has investigated blind recovery of

convolutional encoders using algebraic and dual-code

characteristics, as shown in publications like [2] and

[3]. In [4] and [5], researchers examined blindly how

to reassemble a pair of recursive systematic

convolutional (RSC) encoders by using iterative

expectation-maximization (EM) and the least-square

approach. In order to identify encoder parameters, the

methods shown in [6] used the rank deficit of the data

matrix, while the methods presented in [7] used

hamming weight distribution. Using the number of

non-zero columns and non-zero elements in the

column echelon form of the data matrix, the authors

presented parameter estimate techniques for Reed-

Solomon (RS) codes. Accuracy levels exceeding 90%

in blind convolutional code identification using

convolutional neural networks (CNNs) have been the

subject of recent research. Current approaches are

computationally intensive and vulnerable to low

signal-to-noise ratios; examples are mathematical

algorithms and rank-based methods. On the other

hand, our CNN model may not intrinsically

comprehend the physics of channel encoding, has

trouble remembering long-range dependencies, and

struggles with sequential dependencies in channel-

encoded data. A. What Came First and What I Did It

should be noted that current research has mostly

concentrated on applying deep learning approaches to

identify individual FEC codes; however, there is a

lack of work on classifying channel encoders using

CNN. This project's main goal is to use deep learning

to classify four channel encoders from an incoming

Vol.15, Issue No 2, 2025

 IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

92

noisy signal and evaluate the classification accuracy,

or the likelihood of correct identification, under

different bit error rate (BER) scenarios. For this task,

we take into account polar, Bose-Chaudhuri-

Hocquenghem (BCH), convolutional, and Hamming

encoders.

Fig. 1. Encoder classification process

 CNN-BASED BLIND ENCODER

CLASSIFICATION
In Fig. 1 we can see the FEC encoders being

classified. At the outset, the FEC encoder is fed a

sequence of bits denoted as b = [b1,b2,...,bk] that are

produced at random. An encoder is defined as

follows: c = [c1,c2,...,cn], where ci is an element of

the Galois Field GF (2). It takes continuous

information bits with a block size of k and generates

an encoded data bit sequence with a block size of n.

Where k is the code dimension and n is the codeword

length, the code rate is given by r = k/n. Modulation

is applied to the decoded digital sequence prior to

transmission via the communication channel. At the

transmitter, the chosen modulation techniques

incorporate binary phase-shift keying (BPSK). The

data bits, denoted as y = [y1,y2,...,yn], are extracted

from the received signal after demodulation at the

receiving end. Subsequently, the data bits are sent on

to the FEC decoder to recover the initial information

bits. The main goal of this study is to develop a CNN

model that can autonomously identify or classify

encoders. There are many digital communication and

storage systems that make use of the channel

encoders under consideration. These systems include

satellite communications, Wi-Fi, and mobile

communication standards such as GSM, CDMA, and

5G new-radio.

Part A: Creating a Database We use MATLAB to

generate datasets for four distinct coding methods in

our experimental setting. We presuppose flawless

frame synchronization and effective information

signal demodulation at the receiving end. Therefore,

we will pretend that the channel is AWGN (additive

white Gaussian noise). Four FEC codes, one of which

is polar code, are shown in the article. The

foundational principle of polar codes is channel

polarization; they were the first codes that provide

direct evidence of channel capacity for symmetric

binary-input discrete memoryless channels (B-DMC).

Encoding and decoding rely heavily on the

dependability sequence, which is described by a

generator matrix that is constructed recursively by the

Kronecker product [9]. On the other hand, block

codes divide data into fixed-size chunks and process

each one separately. A Hamming block coding, often

used for single-error correction, is selected for our

experiment. Furthermore, BCH codes, which are also

block codes, are well-known for their strong error

correcting capabilities. They can effectively handle

random and burst mistakes in many applications.

Contrarily, convolutional encoders work with a

continuous data stream, which is why they differ

from block codes. It takes bit-by-bit input data and

processes it in a shift register, then uses modulo-2

additions to combine the contents of the registers to

produce the encoded output. Standard notation for

block codes is (n,k), where r = n−k represents the

length of the parity or redundancy bits. The length of

the coding constraint is expressed by N0 in the

convolutional code described in this study, which is

represented by (n,k,N0). In this study, the polar codes

are represented by the variables (N,K). Here, N is the

codeword length, which is always an exponent of 2

(i.e., 2n for all n ≥ 2), and K is the variable that

represents

Vol.15, Issue No 2, 2025

 IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

93

Fig. 2. Basic structure of CNN the

number of message bits.

PROPOSED CNN MODEL
The main parts of a convolutional neural network

(CNN) design are the input and output layers, as well

as the convolutional, pooling, and fully-connected

layers, as shown in Figure 2. Images or data

structured like a grid may be inputted into the input

layer. Central to convolutional neural networks

(CNNs) are the convolutional layers, which use a

series of filters to extract information [11]. These

filters detect patterns like edges, textures, and basic

forms by performing convolution operations over the

input data. Convolutional layers use filters, often

called kernels, which are tiny matrices or tensors that

convolve over the input data. The following pooling

layers keep important information while reducing the

spatial dimensions of the feature maps. Methods like

max-pooling and average-pooling, which are often

employed in pooling, accomplish this decrease.

Lastly, characteristics obtained from earlier layers are

processed to a level where fully linked networks

cannot keep up. A softmax based probability

distribution is used to achieve this. Section A.

Convolutional Neural Networks—Learning It is

necessary to initialize weights, perform forward

propagation, calculate losses, backpropagation, and

weight up dates in order to train a convolutional

neural network (CNN). Gathering and preprocessing

a labeled dataset is the first step, followed by

randomized or transfer learning-based weight

initialization of the network. Forward propagation

involves sending training data in batches across the

network and then applying the right functions to

calculate the loss. After then, optimization methods

like stochastic gradient descent (SGD) are used to

guide further weight updates by calculating the loss

gradients with respect to the weights via

backpropagation. To identify any overfitting, this

iterative procedure is performed for several epochs,

and keeping an eye on the validation loss is critical.

B. Instruction and Evaluation Our Keras-based model

employs the Adam optimization technique and cross-

entropy loss, starting with a learning rate of 0.0001,

in this study. A desktop PC with 64 GB of RAM and

a core i9 CPU is used for both training and testing in

an

TABLE I Block encoder COMSNETS 2024

- Poster Track Normalized Confusion

Matrix ARCHITECTURE SPECIFICATIONS

OF THE CNN

Anaconda Navigator environment. of 80% set aside

for training the model and 20% for assessment, we

produce a dataset of 10,000 samples, each 1000 in

length (int32 format). We also make use of a one-

dimensional (1-D) CNN model, the specifics of

which are laid forth in Table I [10]. Our objective is

to evaluate the model's performance by determining

its classification accuracy for each encoder category

using metrics such as true positives (TP) and false

positives (FP) as

Vol.15, Issue No 2, 2025

 IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

94

Fig. 3. Classification accuracy of

encoders across various BER

SIMULATION RESULTS AND

DISCUSSIONS
(1) The Hamming code, with its codeword length of n

= 7, code dimension of k = 4, and generator matrix G

= [1010011;1001001;0011011;1000101], is used as

the block en coder. Plus, we use BCH coding with n=

31 and k= 21. We take into account a convolutional

encoder with a rate of 1/2, a generator polynomial g =

[15,17], and a constraint length N0 = 4. As for the

fourth encoder, it's a polar encoder that uses a Q =

1024 reliability sequence, codeword length N = 16,

and message bit length K = 2. After training the CNN

model on the encoder dataset, we used a specialized

test to assess its performance.

Fig. 4. Confusion matrix for the

classification accuracy of encoders at

0.02 BER value

data set. Figure 3 shows the classification accuracy of

four different encoders: polar, convolutional,

Hamming, and BCH. As shown in the picture, the

accuracy always exceeds 95% for BER values below

0.03 and 100% for BER values less than 0.02 (with

the exception of input size 512), regardless of the

input length. The accuracy of the categorization

process is significantly improved with higher input

sizes. The confusion matrix for encoder classification

with 4096 input size and a BER of 0.02 is shown in

Figure 4. The horizontal axis represents test results,

whereas the vertical axis represents predicted values.

Squares with a dark blue color represent the encoders'

classification accuracy in this matrix. Out of the four

encoders, the confusion matrix shows that the

Hamming encoder is the only one with a

classification accuracy below 85%, while the other

three attain a perfect 100%. This is due to the fact

that, in comparison to other codes, Hamming codes

provide somewhat less redundancy; hence, there are

fewer different patterns for the CNN to learn due to

this reduced redundancy.

Conclusion
 Final Thoughts In this paper, we used a deep

learning convolutional neural network (CNN) model

to determine which of four encoders—block,

convolutional, BCH, and polar—should be used over

an AWGN channel. We looked at the correlation

between input sample length and accuracy in

classification, and we found that it increased as the

sample size increased. The accuracy always hits

100% at lower BER values before hitting the 0.02%

BER threshold, which is noteworthy.

REFERENCES

[1]. R. Swaminathan and A. S. Madhukumar,
“Classification of error correcting codes and
estimation of interleaver parameters in a noisy
transmission environment,” IEEE Trans. on
Broadcast., vol. 63, no. 3, pp. 463-478, Sept.
2017.

[2]. M. Marazin, R. Gautier, and G. Burel, “Dual
code method for blind identification of
convolutional encoder for cognitive radio

Vol.15, Issue No 2, 2025

 IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

95

receiver design,”in Proc. IEEE GLOBECOM,
Honolulu, USA, pp. 1–6, 2009.

[3]. Y. Ding, Z. Huang, and J. Zhou, “An improved
blind recognition method for synchronization
position and coding Parameters of k/n rate
convolutional codes in a noisy environment,”
IEEE Access, vol. 8, pp. 171305-171315, 2020.

[4]. Y. G. Debessu, H.-C. Wu, and H. Jiang, “Novel
blind encoder parameter estimation for turbo
Codes,” IEEE Commun. Lett., vol. 16, no. 12, pp.
1917–1920, Dec. 2012.

[5]. P. Yu, J. Li, and H. Peng, “A least square method
for parameter estimation of RSC sub-codes of
turbo codes,” IEEE Commun. Lett., vol. 18, no. 4,
pp. 644–647, Apr. 2014.

[6]. Swaminathan R, A. S. Madhukumar, N. W. Teck,
and S. C. M. Samson, “Parameter estimation of
convolutional and helical interleavers in a noisy
environment,” IEEE Access, vol. 5, pp. 6151-
6167, 2017.

[7]. S. Wee, C. Choi, and J. Jeong, “Novel blind
interleaver parameters estimation based on
Hamming weight distribution of linear codes,”
Digital Signal Process., vol. 117, no. 103190, Oct.
2021.

[8]. J. Wang, C. Tang, H. Huang, H. Wang, and J. Li,
“Blind identification of convolutional codes
based on deep learning,” Digital Signal Process.,
vol. 115, no. 103086, Aug. 2021.

[9]. H. Song, Y. Chang and K. Fukawa, ”Encoding and
Decoding of Polar Codes for Frequency Selective
Fading Channels,” IEEE Vehicular Techno. Conf.
(VTC), Helsinki, Finland, pp. 1-5, Aug. 2022.

[10]. J. Wang, C. Tang, H. Huang, H. Wang,
and J. Li, “Blind identification of convolutional
codes based on deep learning,” Digital Signal
Process., vol. 115, no. 103086, Aug. 2021.

[11]. A. Khan, A. Sohail, U. Zahoora, and A. S.
Qureshi, “A survey of the recent architectures
of deep convolutional neural networks,” Artif
Intell Rev, vol. 53, no. 8, pp. 5455–5516, Apr.
2020.

