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Abstract 
It is now normal practice to simulate fluid 
behavior numerically by solving the Navier-

Stokes equations using turbulence models. To 

efficiently optimize a design using a flow 

solver in the loop, however, it is necessary to 

do more than just solve these equations. An 

efficient aerodynamic and interdisciplinary 

design optimizer is discussed, along with the 

guidelines for constructing such a flow solver. 

The ability to load the flow solver as a library 

that gives you immediate memory access to the 

necessary data is one of the most highly 

recommended features. Some further 

suggestions include using a higher-level 

language for scripting and paying close 

attention to solution warm beginning, code 

efficiency, flow solver robustness, and solution 

failure handling. We provide the open-source 

flow solver ADflow as an example of a tool 

that adheres to these guidelines. The 

performance benefits suggested by the 

proposals are supported by the outcomes of 

aerodynamic optimization, aerostructural 

analysis, and aerostructural optimization 

performed using ADflow. The release of these 

suggestions and the availability of the source 

code opens the door for other solvers to use the 

same application programming interface. 

ADflow is an open-source component of a 

larger set of tools for optimizing aerodynamic 

shapes. 

1 Introduction 
Because the availability and power of 

computers has improved, computational 

approaches have been applied differently in 

engineering design. Formerly reserved for 

final design verifications, computationally 

expensive simulations are now routinely 

used throughout the preliminary design 

phase. Many uses may be found for this 

newfound potential:  One, simulations may 

be run at a finer spatial or temporal grain.  

Complex physical models may be used in 

simulations; for instance, the Reynolds-

Averaged Navier-Stokes (RANS) equations 

can be solved in place of the simpler Euler 

equations. 

This allows for a wider range of flight 
configurations to be examined within a given 

geometry. 

Four, parameter sweeps or an optimization 

algorithm may be used to compare and 

contrast many designs in search of 

improvement and a better knowledge of the 

design performance tradeoffs. 

 

5. A multidisciplinary study may be carried 

out by combining computational models that 

are typically studied separately. 

Venkatamaran and Haftka [1] studied the 
historical implications of growing computing 

performance on structural analysis and 

optimization. They observed that time spent on 

computational analysis tends to grow to 

occupy all available time, in accordance with 

Parkinson's Law [2]. A similar rule by 

Thimbleby [3] asserts that software programs 

develop to take up greater computer memory, 

processing capability, and storage space. 

Venkata- maran and Haftka [1] also note out 

that anecdotal evidence shows that time needed 

for “adequate” structural analysis has remained 
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consistent, at 6 to 8 hours over the previous 30 

years. Situations 1 and 2 above are exemplified 

by the use of refined computational models 

made possible by computing advancements. 

We think that the key reason for this is because 

the first two situations alone do not 

substantially impact the complexity of an 

engineering design work flow. 

In this study, we analyze the criteria required 
to accomplish scenarios 3 through 5 in the 

context of computational fluid dynamics 

(CFD) (CFD). In all three of these cases, the 

computational approach must be employed 

frequently by fully automated means, 

necessitating the inclusion of extra elements 

essential to accurate calculation. One of these 

must-have characteristics is a clear and simple 

API that allows the solver to be used as a built 

library with direct memory access (API). This 

enables the solver to be deployed successfully 

as part of an analytical framework on large-

scale high-performance computing (HPC) 

resources. 

In this work, we show how ADflow, a free, 
open-source, structured, multi-block, overset 

flow solver, satisfies these needs. 

1 For the CRM shape specifically, 

aerodynamic and aerostructural design 

optimization challenges are solved by ADflow 

[4, 5]. All of the calculations described in this 

study are steady-state RANS solutions. A 

specific fidelity option or approach to solving 

the problem is not necessary to understand or 

implement the ideas presented here. The API 

has been used to 2D and 3D panel solvers as 

well as various 3D flow solvers. Apart than the 

shown steady-state solutions, ADflow is also 

capable of time-accurate and time-spectral 

computations. 

What follows is a summary of the paper. In 
Part 2, we go into depth about what a multi-

disciplinary solver needs to do, and in Section 

3, we present the idea of the solver as a library 

of code. In Section 4, we detail the Python API 

that was created to meet the requirements laid 

forth in Chapter 2. These sections are supposed 

to provide a general guidance for solver needs 

and are thus solver agnostic. Part 5 discusses 

how these conditions were accomplished for 

the ADflow solver, and includes an overview 

of past investigations made feasible by 

ADflow. Many analysis and optimizations are 

presented in Section 6 to show how well 

ADflow performs. Section 7 outlines the key 

results of this investigation. 

2 Requirements for an 

efficient multidisciplinary 

flow solver 
Unlike a standalone solver, a flow solver 
designed for interdisciplinary analysis or 

optimization requires a particular set of 

features. In order to solve for a certain 

geometry and flow condition with enough 

engineering precision, a standalone flow solver 

must be as fast as feasible. To solve a 

multidisciplinary analysis or optimization 

issue, the flow solver works as part of a bigger 

framework and has to be performed numerous 

times in succession without operator 

intervention. As you'll see later, this has 

various ramifications for the necessary features 

of the flow solver. 
2.1 Solution failure handling 

2.2 When employing a CFD solver 
inside an automated process, as is 

essential for interdisciplinary 

analysis and optimization, the 

solver is typically needed to 

examine a large range of operating 

points without human interaction. 

In this case, it is possible that the 

flow solver will be instructed to 

execute one or more analyses that 

fail to yield an acceptable solution. 

For a completely automated 

method, the solution must fail 

gracefully without incurring an 

unrecoverable defect. This is 

especially essential for HPC 

simulations since the total process 
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might takes many hours or days, 

and aborted operations incur the 

extra expense of resubmitting the 

task and waiting for its turn in the 

queue. 

2.3 As this is the case, the solution for 

an automated process must include 

robust exception handling. Whether 

the solution completely converges, 

diverges, partly converges, stalls, or 

generates a NaN (not a number), 

these are all significant events that 

must be handled. Keeping an eye on 

the residual of the flow equations 

and using logic trees makes these 

scenarios quite straightforward to 

deal with. After processing each 

scenario, a boolean response may 

be returned to the user or the 

driving algorithm. 

2.4 The primary exception to this is the 
circumstance when NaNs are 

encountered. In this instance, the 

solver has to be reset, including a 

thorough re-initialization of the 

flow to guarantee that all of the 

NaNs in memory are purged so that 

future flow solutions are not 

cancelled because of a prior NaN in 

memory. Although while it is more 

expensive to reset the flow solution 

entirely, this is still far more 

efficient than re-initializing the flow 

solver and reallocating all the 

necessary memory as a standalone 

solver would need to do. 

2.5 Solution restart 

2.6 The need to automatically execute 

several solutions in succession 

implies, secondly, that there is a 

strong incentive to reduce the cost of 
each solution in the series. A solution 

restart technique is the quickest and 

easiest way to do this, since it ensures 

that subsequent solutions begin in a 

convergent condition. For many 

optimization tasks, like generating 

drag polars, sweeping parameters, 

and conducting gradient-based 

optimizations, the previously-solved 

state is preferable to the default 

uniform flow. This can be done using 

file I/O for most solutions, but doing 

it in memory is significantly quicker. 

Combining solution restarts with the 

right method may significantly 

increase the pace at which subsequent 

solutions are found. For example, 

when the solver is restarted using the 

prior answer as the beginning 

estimate, Newton's approach 

produces great terminal convergence 

given a good starting point. This 

restart feature should be made 

available as an option via the API, 

enabling the user to deactivate it if 

beginning with a uniform flow is 

more advantageous, in circumstances 

when the prior solution is not an 

appropriate starting point. 

2.7 Robust startup 
No matter the application, a reliable approach 
for initializing the flow solver is always 

welcome. Yet, as we compute a series of 

successive answers in an automated form, it is 

crucial that our launch procedure be as 

bulletproof as possible. The automated process 

will generate a large set of initial conditions, 

from which the solver must converge to a 

solution. 

Moreover, this is necessary if the flow is reset 
because of a poor solution, necessitating a 

fresh start at the following solution point. On 

top of that, while optimizing a design, the 

optimizer is likely to test out impractical 

intermediate designs, such as those with 

extreme flow separation. For these special 

instances, Newton's approach often fails during 

the first phases of convergence, while 

producing strong terminal convergence. The 

necessity for a solid beginning procedure is 
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heightened by these elements. 
2.8 Fine-grained iteration control 

When utilizing a flow solver in a coupled 
analysis (for example, coupled with an external 
structural solver or a propulsion model) it is 
also vital to be able to manage the number of 

iterations conducted for a particular solution. 
In many of these circumstances, it has been 
proven that completing partial flow solutions 
between coupling updates enables the coupled 
solution to be completed with just a minimal 
increase in the overall flow solution cost. This 
has been proved for example, in static 

aeroelastic analysis by Kenway et al. [5], who 
showed that a relative convergence tolerance 
of 0.1 per Efficient convergence through all phases 

of solution 

Three distinct stages can be identified in the 

external aerodynamic simulations we calculate 

using ADflow: initialization, steady state, and 

shutdown. The near-field of the aerodynamic 

surface interacts with the initial flow solution 

during the start-up phase. The near-field 

solution and the far-field boundary interact, 

and the flow solver deals with it at the 

transition analysis stage. Finally, the solver 

converges the numerical solution of the flow to 

further minimize the residuals to the set 

convergence tolerance, after having 

successfully captured the overall flow patterns. 

The first two stages are often the main focus of 

traditional engineering flow models. For this 

reason, it is sufficient to converge through the 

transition phase of the solution only far enough 

to instill engineering confidence in the 

solution. All three stages of the solution 

become crucial, however, since throughout an 

optimization, tight numerical convergence of 

the solution is desired, particularly towards the 

conclusion of the optimization process. 

Each of these stages is characterized by a 

distinct kind of convergence for various 

algorithms. This highlights the need for a 

flexible solution algorithm switching 

mechanism that may be used throughout each 

simulation to improve convergence rates. The 

nonlinear residual norm provides a useful 

gauge for tracking progress toward 

convergence and should trigger these 

transitions automatically. 

2.9 Direct memory access and 

API 
Most optimization and interdisciplinary 

analyses use file I/O to interact with standalone 

flow solvers. With this method, a guiding 

framework or script is set up to mechanically 

produce solver and optimizer input and output 

files. Although while this method may be used 

to pair codes practically anywhere, it does have 

certain downsides. 

The first problem is that there isn't enough disk 
bandwidth, which increases the time it takes to 

store, retrieve, and process the data. As file I/O 

is often a shared resource on massively parallel 

computing platforms, the throughput 

experienced by a particular user might be 

significantly reduced. If you have a powerful 

network connecting your computing nodes, 

you can exchange data at rates that are 

exponentially higher than anything you could 

ever hope to achieve with file I/O. Yet, 

information transmission becomes much more 

challenging when numerous disciplines or 

optimizers make use of simultaneous solution 

methodologies. 

The possibility for inaccurate results is the 

second downside of the file I/O method. When 

data is reloaded, some information may be lost 

in comparison to an original double precision 

reference if the analysis output is written using 

ASCII with a restricted number of digits or 

using binary with single precision (to conserve 

disk space and I/O time). In order to get rid of 

this disparity, binary double precision numbers 

must be used for all stored data, which results 

in a lot of space being used up on the disk. 

 

The third problem is that the same standalone 

code is always being run. A new process must 

be started whenever a code is called, and one-

off initialization operations are often carried 

out at the outset. This part of the code is 
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usually not as speed-optimized as the rest of 

the program. Moreover, in the course of 

optimization and cross-disciplinary analysis, 

iterative solutions are used. 

 

tions have a lot in common with one another. If 

you're using an iterative approach, you may 

save time and money by carrying over this data 

from solution to solution. While a restart 

capability is not strictly necessary for this 

process, it does increase the data that must be 

written to and retrieved from the disk. As a 

result of these two variables, it is far more 

costly to do many subsequent analyses with a 

standalone code than with the same code 

executed as a library with an API. 

If an application programming interface (API) 
does not provide direct access to the necessary 

functions, as is often the case with commercial 

software, then the file I/O strategy is the only 

remaining alternative. In order to prevent 

problems with file I/O, it is essential that all 

data transfer from the CFD code be performed 

through direct memory access. The analysis 

code is built as a library instead of a standalone 

executable, and a process script controls the 

order in which tasks are executed during 

optimization or analysis. Each succeeding 

analysis is set up to be executed directly by the 

process script rather than through an input file. 

This makes it possible for the aerodynamic 

states, forces, and gradients, among other data, 

to be transported across memory on their way 

into and out of the CFD solver. As a result, the 

cost each iteration drops dramatically, since 

there is no longer any need to write data to 

disk. When we are updating coupling variables 

or switching iteration techniques, there is no 

penalty to halting and beginning the iteration 

process as we move variables via memory. For 

a static aeroelastic solution using ADflow, 

Kenway [6] analyzes the costs of the direct 

memory access and file I/O techniques and 

finds that the I/O approach is twice as 

expensive. 

2.10 Code efficiency 

Multidisciplinary analysis and optimization 
codes place a higher premium on code 
efficiency. The repeated code runs used to 
iteratively refine the design are mostly 

responsible for this. It's already costly to run 
analytic procedures, and this iterative process 
just makes it more so. So, it is crucial to 
enhance the computational efficiency of 
analytical codes used in interdisciplinary 
design optimization. 
Specifically, we take into account these three 
tiers of efficiency when we design our code. 

Algorithmic efficiency is the first and most 
crucial level, and it is reached by using cutting-
edge algorithms to converge the linear and 
nonlinear systems of equations that emerge 
throughout the optimization process. The next 
step in efficiency is a direct-memory-access 
API, which, as was previously indicated, 

removes the effect of file I/O constraints on the 
solver's speed. Code optimizations tailored to 
the running algorithms and hardware are 
necessary for maximum efficiency. Memory 
bandwidth constraints may be reduced, 
vectorization can be optimized, and the number 
of cache misses can be reduced, among other 
related enhancements.
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2.11 Additional requirements for 

efficient multidisciplinary 

design opti- mization 

While having the capabilities listed in the 
previous subsections is sufficient to 
enable efficient multidisciplinary 
analysis, given the high cost of 
analyzing most multidisciplinary 

systems, it is important to use efficient 
optimization methods as well as efficient 
solvers when conducting 
multidisciplinary optimization. 

As shown in the study by Yu et al. 
[7], gradient-based optimization 
algorithms are much more efficient at 

finding optimal solutions for CFD-based 
optimization problems than gradient-free 
optimization algorithms. To this end, not 
only is it important to have efficient 
primal solution algorithms, but to also 
have efficient computation of derivatives 
for a multi- disciplinary flow solver. In 
particular, efficient computation of 

derivatives of a few functions of interest 
with respect to a large number of design 
variables is required. The adjoint method 
is a useful approach for accomplishing 
this [8–10]. Kenway et al. [11] describes 
efficient ap- proaches for implementing 
adjoint methods for CFD solvers and 

benchmarks ADflow and OpenFOAM 
adjoint implementations. 

 

3 The CFD solver as a 

library 

Many of the requirements listed in the 

previous section can be achieved by 
viewing the CFD solver as a library. 
This approach enables the required level 
of access to the code using an API while 

maintaining modularity in terms of code 
development. Furthermore, a common 
interface can be developed for multiple 
CFD codes, enabling the interchangeable 

use of these CFD solvers as modular 
components in a broader computational 
framework. 

 

3.1 Code wrapping 

To treat the solver as a library and 
implement the API, it is necessary to 
wrap its functionality to control it using a 
scripting language. There are three 
approaches for providing scripting 
capability for a solver with increasing 

levels of intrusiveness: 
 

File I/O wrapping: This is the 
simplest, least intrusive, and most 
universal of the methods because 
it can be done by treating the 
solver as a “black box” without 
having access to the source code. 

Using this approach, a script 
writes an input file, executes the 
solver, and then parses the 
resulting output. However, this 
approach suffers from the 
drawbacks described previously. 
The DAFoam wrapper for 
OpenFOAM developed by He et 

al. [12] is an example of this 
approach. 

Function wrapping: This level of 
wrapping exposes some but not 
all of the underlying methods in 
the solver. This is the approach 
used to wrap ADflow. For 

example, methods such as solve 
or getSolution are made 
available through the API, but 
the lower-level functions used by 
the solver are not. This method is 
often employed when the code was 
written originally as a stand-alone 
solver and just a subset of high-

level methods required for the 
API are exposed for the scripting 
level interface. 
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# Import modules 

from  solverlib  import  FLOWSolver 

from  baseclasses import  AeroProblem 

# Aerodynamic problem description 

ap = AeroProblem( name=’flow’, mach=0.5 , alpha=1.0 , altitude=0.0 , areaRef=1.0 , chordRef=1.0) 

options = {User Options} 

CFDSolver = FLOWSolver( options=options) 

CFDSolver(ap) 

# Create solver object 

# Solve problem 

# Only non−default options 

Direct object wrapping: The most 
intrusive wrapping approach 

exposes all of the un- derlying 
data and methods to the scripting 
interface. The scripting code is 
responsible for creating all the 
required objects, down to the 
lowest level. This approach is 
most often used when developing 
a wrapper for an object-oriented 

code written in C++. An example 
of a CFD code that uses this 
approach is elsA [13, 14]. 

 

3.2 Example workflow using 

Python 

The vast majority of CFD programs rely 
on either a graphical user interface 
(GUI) or text user interface (TUI) to 

control the execution of the solver. It is 
often the case that a GUI is added on 
top of an existing TUI, such as the 
commercial packaging of the 
OpenFOAM open- source solver [15, 

16]. While GUIs help inexperienced 
users quickly learn the software, they 
are usually not flexible enough to 
effectively implement the scenarios 3 

through 5 described in Section 1. For 
these more complex tasks, the ability to 
quickly and easily script the 
computational software is a necessity. 

The most common way to script 
TUI-based analysis methods is to use a 
scripting language to automatically 
generate an input file, launch the solver, 

and then parse the resulting text- based 
output for further analysis. This 
procedure is tedious and error prone, 
and output parsing tends to be fragile. A 
better approach is to perform scripting 
using the CFD solver directly. 
Furthermore, with an easy to use yet 

powerful scripting language such as 
Python, simple scripts can completely 
replace the TUI. The use of scripting to 
control the solver facilitates the 
transition to the more extensive 
scripting required for complex tasks. 

 

Figure 1: Example of control script for solving a flow problem. 

 

Figure 1 shows a simple control script for solving a flow problem. This script includes 

the main settings of a typical TUI 

file for a CFD solver: flow conditions, 
normalization values, and solver 
parameters. The only additional 
complexity comes from the module 
imports and the creation of the two 
required Python objects, AeroProblem 
and CFDSolver. This type of run file is 

functionally equivalent to a TUI file. 
The power of this approach comes from 
the flexibility of implementing both 

simple and complex automation tasks. 
Consider, for example, the creation 

of a drag polar for an airfoil, which 
requires a sweep over a range of angle of 
attack variables. Figure 2 details the  
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# Import modules 

from  solverlib  import  FLOWSolver 

from  baseclasses import  AeroProblem 

# Aerodynamic problem description 

ap = AeroProblem( name=’flow’, mach=0.5 , alpha=1.0 , altitude=0.0 , areaRef=1.0 , chordRef=1.0) 

options = {User Options} 
CFDSolver = FLOWSolver( options=options) # Create solver object 

# Only non−default options 

f = open(’ polar. txt’,’w’) 

for i in range(0 ,10 ,11): 

ap. alpha = i 

CFDSolver(ap) 

# Set new angle of attack 

# Solve problem 

funcs = {} 
CFDSolver. evalFunctions(ap, funcs) # Extract  solution 

f. close() 

f. write(’%g %g %g %g\n’%( ap. alpha , funcs[’cl’], funcs[’cd’], funcs[’cl’]/ funcs[’cd’])) 

The script writes the results to a simple 
text file for further processing. In this 

script, we also take the opportunity to 
compute a derived value (the lift-to-drag 
ratio), demonstrating the ability to 
perform customized post-processing 
online with the aerodynamic simulations. 
This example highlights some of the 

advantages of the pure scripting approach 
over a scripting language that creates an 
input file and parses the results: No 
restart files are written or read, and 

even though the solver is called 
multiple times, the initialization needs 
to be run only once. 

Figure 2: Control script for creating a drag polar. 

 

 
 

4 Python API 

The key to using the flow solver with 
a scripting language effectively is a 
well-designed API. To that end, we 

have developed a Python API that 
meets all of the requirements for a 
solver that is to be used in 
multidisciplinary analysis and design 
optimization. This API is extensible to 
various types of flow solvers and has 
been demonstrated on several different 

types of codes, including a structured 
multi-block and overset solver 
(ADflow), an unstructured solver 
(OpenFOAM) [15, 16], a 3D surface 
panel code (Tripan) [17], and a 2D 

airfoil solver (XFoil) [18]. The 
following subsections describe the key 
elements of this API. 

 

4.1 API concept 

The fundamental idea driving the 
development of this API is the concept 
that in a truly extensible 
multidisciplinary framework, all of the 

components must be modular. It is 
unreal- istic to expect that all disciplines 
in a multidisciplinary analysis to be 
coded in a monolithic framework. This 
would limit the ability of the code to be 
extended to accommodate future 
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needs. Therefore, we define the 
boundaries of a typical CFD analysis to 

establish a general method for 
modularizing CFD codes. 

The key concept for enabling this is 
to define the geometric surface of the 
CFD problem as the point of interaction 
for the flow solver. In most CFD 
problems, this geometric surface defines 
the boundary of the flow domain. This 

is true regardless of the flow solver 
fidelity level. Both analyses with a 
volumetric analysis domain, such as  
RANS  and  Euler  CFD codes, and 
analyses with a surface domain, such as 
a panel code, can be handled using this 
approach. 

Furthermore, having the interface 

defined at the surface allows for 
straightforward use in both 
multidisciplinary analysis and design 
optimization applications. It is on this 
surface that physical quantities are 
integrated. For example, the transfers of 
the heat fluxes in an aerothermodynamic 

analyses or the displacements and 
forces in an aerostructural analyses are 
done through this surface. 

A second important concept for the 
API is the separation between the flow 
conditions definition for a given 
analysis and the geometric definition of 
the problem. Several tasks, from 

parameters sweeps to multipoint 
optimization problems, require the 
analysis of a single geometry at multiple 
flow conditions. By separating the 
definition of the from the solver itself, it 
is possible to analyze any number of 
these flow conditions without re-

initializing the flow solver and incurring 
the associated startup penalty. 

 

4.2 API layout 

Using the concepts mentioned above, the 

API needs to have the ability to: 

• Manipulate the surface of the CFD 

geometry 

• Specify the flow conditions 

• Solve for the flow state variables 

• Evaluate the functions of interest 

• Recover the solution from a failure 
state 

• Evaluate the solver derivatives 

Here, we elaborate on each of these 
requirements. In particular, we detail 
the specific implementation we have 

developed for the API and how each of 
the specified requirements is met 
through the API functionality. Figures 
3 and 4 show simplified UML 
diagrams for the solver and 
aerodynamic problem classes that 
embody the API outlined here. The 
figures are simplified by leaving out 

some of the detailed private attributes 
and functions that are solver specific 
and not part of the general API. The 
basic API layout is composed of a 
subset of methods in these figures that 
provide the essential functionality. 
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getOption 
printCurrentOptions 

     init   
     call 
printModifiedOptions 
setOption 

solverCreated 
imOptions 
name 

category 
defaultOptions 
options 

families 
DVGeo 
mesh 

_updateGeomInfo 

BaseSolver 

AeroSolver 

curAP 
mesh 
_updateGeomInfo 
adflow 

comm 
coords0 
DVGeo 

ADFLOW 

object 

4.2.1 ADflow class layout 

The ADflow API uses class inheritance, 
as shown in Figure 3, where each class 

inherits the properties and methods of 
all of the classes to its left. The base 
class is the Python object class, which 
is part of the Python standard and is the 
basic building block for all classes in 
this language. 

The BaseSolver class is used for 
different types of solvers and defines 

methods for option handling and class 
naming, which are common to all the 
solvers we implement. The Aero- 
Solver class is the first layer of 

specialization for aerodynamic solvers. 
This class contains attributes to access 
mesh and geometry objects, as well as 
basic implementations of most of the 

API calls outlined in this work. The 
fourth and final class is the ADFLOW 
class, which contains specific 
implementations of the functionality 
described in this work. 

The purpose of each of these calls is 
provided in the following sections. 
Functions starting and ending with are 

intrinsic Python functions that are part 
of a standard Python class 

definition. 
 

 

 

 

 

 
 

 

 
 

getStates 
setStates 
checkSolutionFailure init   
solveAdjoint 
getResNorms 
getResidual 
setMesh 
setDVGeo 
resetFlow 
getInitialSurfaceCoordinates 
setSurfaceCoordinates getForces 
getSurfaceCoordinates 

     init   
solveAdjoint 
computeJacobianVectorProductFwd 
computeJacobianVectorProductBwd 
getSurfaceConnectivity setStates 
setAdjoint 
setMesh 
solveAdjointForRHS 
writeSolution 
setAeroProblem 
getResNorms 
     call 
setDisplacements 
resetAdjoint 
     del   
resetFlow 
setSurfaceCoordinates 
evalFunctionsSens 
evalFunctions 
getSurfaceCoordinates 
getResidual getAdjoint 
getStates 
getForces 

 

Figure 3: Simplified UML diagram of ADflow and its base classes. 

 

 
4.2.2 AeroProblem class layout 

The AeroProblem class (shown in 

Figure) 4 stores and updates all of the 
information required to run an 
aerodynamic solution at a given flow 
condition. This includes functions to 
treat these variables as design variables 
and to generate a complete 

thermodynamic state from various 
combinations of input data. 
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englishUnits 

hermite 

call 

init 

getTP 

 

AeroProblem 

R 

V 

gamma 

inputs 

q 

a 

SSuthDim 
dict   

altitude 

name 

funcNames 

mach 

T 

TSuthDim 

P 

rho 

atm 

Pr 

reynoldsLength 

nu 

mu 

re 

reynolds 

muSuthDim 

DVs 

bcVarData 

 init   

_setStates 

_updateFromV 

setDesignVars 

addVariablesPyOpt 

_updateFromRe 

addDV 

evalFunctionsSens 

evalFunctions 

_updateFromM 

 

This class contains an instance of 
the ICAOAtmosphere class in the atm 

attribute. This class has a smoothed 
implementation of the ICAO standard 

atmosphere tables that computes fluid 
temperature, pressure, and density for the 
altitude corresponding to the flight 
condition. 

 

 
 

 

Figure 4: Simplified UML of the aerodynamic problem class. 

 

 
4.2.3 Surface manipulation 

There are three main functions required 

for the manipulation of the boundary 
surfaces of a CFD problem, whose 
names are self explanatory: 
getSurfaceCoordinates, 
setSurfaceCoordinates,     and     
getSurfaceConnectivity. As previously mentioned, the philosophy of this API is that these boundary surfaces represent the interface between the CFD solver and other components or disciplines in a multidisciplinary analysis. 

This approach allows the API to be 
used for both 3D volume mesh codes, 
such as those based on the RANS or 
Euler equations, or lower-fidelity codes, 
such as panel codes. However, this 
means that any mesh manipulation 
tasks, such as mesh warping, mesh 

regeneration, or mesh adaptation for 
volume meshes must be handled inside 
the flow solver definition. This can be 
accomplished in many different ways 
and is solver specific. Therefore, we do 

not attempt to prescribe an approach to 
handling volume meshes in this API. In 
ADflow, the volume mesh is handled by 
plugging an additional Python module 
into the flow solver at the Python layer, 
as shown in Figure 7, allowing 
different mesh manipulation tools to be 
used 

object 
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def getSurfaceCoordinates( self, groupName=None): 

""" 

Return the coordinates for the surfaces defined by groupName. 

""" 

return  coords 

as needed. 
Figure 5 shows the 

getSurfaceCoordinates function, which 
returns the coordinates of CFD 
boundary surfaces. The default 
functionality is to return all solid wall 
boundaries of the model, while the 
groupName argument allows the user to 
select specific subsets of the boundary 

points to be returned. 
Subset-selection is important for 

some types of multidisciplinary analysis. 
For example, in a static aeroelastic 
(aerostructural) analysis with a wing-

body-tail CFD mesh that only has a 
wing-box structure, the user would 
probably not want the deflections of the 
wing structure to affect the fuselage or 

the tail. With this API, the user can 
request just the coordinates of the wing 
surface, so that this subset can be used to 
create the association between the aero- 
dynamic and structural meshes. The 
surfaces are typically stored in a 
distributed manner, with a portion of the 
surface on each processor, eliminating 

serial processing bottlenecks. 

 

Figure 5: Function that returns the surface coordinates that define the boundary surface of the 

flow problem. 
 

 

The getSurfaceConnectivity 

function returns a connectivity array 
for the surface co- ordinates. This 
connectivity describes the boundary 
surface mesh of the CFD based on the 
coordinates returned in the 
getSurfaceCoordinates function. This 

additional information is required to 
facilitate the communication with other 
disciplines, such as structural analysis 
and mesh deformation. 

The final surface manipulation 
function is setSurfaceCoordinates, 
which allows the coordinates, as 
returned in getSurfaceCoordinates to 

be updated at any time. 

 
4.2.4 Set flow conditions 

The function that sets the flow 

conditions is internal to the solver class 
and is not part of the API. The flow 

condition information is contained in an 
AeroProblem class. This class allows 
the user to specify the required flow 

conditions in a variety of ways. For 
external flow calculations, the class 
computes the full set of thermodynamic 
variables required by the flow solver. 
Additionally, specific boundary 
conditions with specified flow 
properties can be set for boundaries, 
such as inflow or outflow conditions. 

Any number of these problems can be 
setup and passed to the solver for 
sequential solutions. 

 
4.2.5 Solve flow problem 

The core solver function is in the   call  

method, whose signature is: 
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This function takes in an AeroProblem 
object and updates any solver specific 
settings for the information contained in 
the AeroProblem. It also updates the 

volume mesh based on the current 
surface, configures the solver with the 
current options, and handles the file 
input and output. 

This function can be configured to run 
for a fixed number of iterations, a 
fixed wall time, or until the solver 
reaches a specific convergence tolerance. 
This allows for fine-grained control over 
the flow solution process, which is useful 

for optimizations and multidisciplinary 
analyses, as previously mentioned. 

 
 

 
 

Figure 7: ADflow integration with other components and disciplines in a multidisciplinary 

context. 

 
the reference. This enables the solver to 
determine the convergence stage even 
when we use the previous converged 
state as the initial guess. 

For the initial stages of convergence, 

we have two alternative algorithms: 
multi-grid, and approximate Newton–
Krylov (ANK). The multi-grid 
algorithms in ADflow can be used with 
multi-block meshes, where obtaining 
coarser levels of the mesh is 
straightforward for meshes with the 

correct number of nodes or cells.  Using 
this approach, ADflow can use a 5-
stage 4

th
 order accurate Runge–Kutta or 

the D3ADI [31] schemes as smoothers 

in the multi-grid startup process. 
The ANK solver was developed to 

add robustness to the pure NK 
algorithm [21]. It uses a pseudo-
transient continuation (PTC) method 

and an approximate Jacobian with the 
backward Euler time-stepping scheme. 
This solver does not require coarser levels 
of the mesh and it is therefore applicable 
to both multi-block and overset meshes. 
The approximate nature of the linear 
system used in the solver, along with 

PTC, allows the algorithm to progress 
the solution even when the state is far 
away from the final solution. The 
adaptive nature of our implementation 

Aerodynamic problem 1 

 
Aerodynamic problem 2 

 
Aerodynamic problem 3 

Geometry 

object 
ADflow 

core solver 
Mesh 

object 

Boundary condition 

values 

Surface 

displacements 

Surface quantities 

(forces, heat fluxes, etc.) 

Integrated quantities 

(CL, CD, CM) 

def c a l l   ( self, aeroProblem): 
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allows the solver to reduce the amount 
of approximation in the linear 
approximation as the solver converges. 
This allows the solver to improve in 

performance as the solution gets closer 
to the converged state. 

When tuning an ANK solver, there 
is a trade-off between efficiency and 
robustness. We have tuned the ANK 
solver defaults to favor robustness. This 
is because in an optimization context, 
the optimizer is likely to try infeasible 

intermediate designs, and also because 
an interruption of the optimization 
process is costly. The robustness of the 
ANK solver enables ADflow to obtain 
steady-state solutions even with these 
intermediate cases, which helps the 
optimization convergence by reducing 

the number of failed flow solutions. 
For the terminal stage of 

convergence, ADflow switches to the 
Newton–Krylov (NK) solver. This 
solver uses Newton’s method to 
converge the nonlinear system and a 
Krylov 



IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501 
                                                                                                                                         Vol.9, No 1, January – March 2019 

 

 

− 

subspace solver to solve the resulting 
linear systems. This approach can yield 
convergence approaching quadratic, but 
only if the initial guess is in the basin of 
attraction of the solu- tion. Therefore, 
we only use this method when the 
relative convergence of the more robust 
nonlinear solver is below 10

−3
 10

−5
. 

Efficient solver restarting is 
important within an optimization 

context, where the flow solver is 
repeatedly called to solve similar 
problems between optimization 
iterations. During successive CFD 
simulations, we use the converged 
solution from the previous optimization 
iteration as the initial guess. If the 
design changes are large, the nonlinear 

residual norm increases, and the solver 
defaults to one of the desired startup 
strategies. This is done to prevent 
failures that might occur with the NK 
solver, when the initial guess is far from 
the solution. However, if the design 
changes are small (as it is likely to 

happen during the final stages of an 
optimization process), the previous flow 
solution provides a good enough initial 
guess for the NK solver to converge.  
As a result, ADflow can rapidly obtain 
solutions for new problems with 
slightly perturbed designs. 

When using gradient-based 

optimization, the flow solver needs to 
provide the derivatives of the functions of 
interest (objective and constraint 
functions) with respect to the design 
variables. In aerodynamic design 
optimization problems of interest, there 
are usually far more design variables 

than functions of interest. As a result, the 
derivatives can be efficiently computed 
using the adjoint method. 

Kenway et al. [11] detail the adjoint 
solver implementation in ADflow. The 
overall ap- proach is to use automatic 
differentiation to compute the terms 

necessary to form the discrete adjoint 
equations, resulting in accurate 
derivatives. This approach to adjoint 
development also reduces the overhead 

to maintaining the adjoint code, since 
the automatic differenti- ation tool can 
be used to update the derivative code 
whenever changes are made in the 
analysis code. Furthermore, the cost of 
the adjoint approach is independent of 
the number of variables (but it scales with 
the number functions of interest), which 

makes it suitable for solving large-scale 
aerodynamic shape optimization 
problems. 

For computational efficiency, ADflow 
implements the three levels of 
improvements men- tioned previously. 
First of all, we use state-of-the-art 

algorithms to converge the resulting 
nonlinear and linear systems. The 
ANK, NK, and adjoint solvers use 
Jacobian-free methods to solve the 
underlying linear solution algorithms. 
This minimizes the code memory require- 
ments, while the solution algorithms 
themselves provide fast convergence for 

the nonlinear and linear systems. 
Secondly, we have direct memory access 
between ADflow and other analysis code 
we couple to it. This removes any file 
I/O bottlenecks. The flow solver is 
only initialized once and the allocated 
memory is recycled only between design 
iterations. Finally, ADflow uses a cache-

blocking technique to minimize cache 
misses with the residual calculations. 
Besides mitigating the memory access 
bottleneck, this also enables us to take 
full advantage of the vector instruction 
sets in modern processor architectures. 
All these enhancements contribute to the 

performance of ADflow and help reduce 
the cost of the optimization problems to 
manageable levels. 

In addition to these enhancements, 
various implementation details in 
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ADflow help de- velopers to easily 
extend the code for novel 
applications. Because the API is 
written in 
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Python, developers can use the 
flexibility of this object-oriented 

language to achieve the de- sired results 
with minimal coding effort. On the 
other hand, the high-performance 
routines in ADflow are written in 
Fortran 90. This enables the developers 
to use a compiled coding language for 
parts of the implementation that are 
performance critical. Furthermore, this 

Fortran layer is coded in a modular way, 
so developers can easily implement new 
turbulence models or modify the 
governing equations without needing to 
change the core code. Finally, we use 
the portable, extensible toolkit for 
scientific computation (PETSc) as the 
underly- ing linear algebra package [32]. 

This provides us with state-of-the-art 
implementations of modern linear 
algebra algorithms, which we rely on 
for the nonlinear and linear solvers in 
ADflow. These factors lower the initial 
coding investment when implementing 
new features in ADflow and enable 

users to extend the code for their 
multidisciplinary applications. 

 

5 Conclusion 
When it comes to interdisciplinary analysis and 

optimization, a flow solver's needs are distinct 

from those of a standalone flow solver. We 

present a list of needs for a powerful 

multidisciplinary solver, discuss the concept of 

using the flow solver as a library (rather than a 

standalone piece of code), and present an 

application programming interface (API) that 

allows for the configuration of intricate 

multidisciplinary analysis and optimization 

problems through the use of concise scripts 

written in a high-level language. 

We offer the free and open-source CFD solver 

ADflow as an example of a flow solver that 

adheres to these standards. We use ADflow to 

measure the effect of these constraints on the 

speed with which aerodynamic optimization, 

aerostructural analysis, and aerostructural 

optimization may be performed 

computationally. 

We demonstrate that a direct memory access 

API saves 12% to 25% of the optimization 

time for aerodynamic optimization, and that it 

may lower the cost of aerostructural 

optimization by as much as a factor of three 

when compared to a file I/O based method. 

These findings prove without a reasonable 

doubt how useful a direct memory access API 

would be for scripts doing transdisciplinary 

analyses. 

 

Aerodynamic and aerostructural design 

optimization issues have previously been 

explored using ADflow. ADflow is included in 

a more comprehensive set of open-source 

software for optimizing aerodynamic shapes 

(MACH-Aero). Some of these studies have 

produced publicly available standards for 

further study. Also, new flow solvers might be 

developed using the ADflow API and utilized 

interchangeably inside the MACH-Aero 

framework.
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